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1 1. DESCRIPTION OF THE ALGORITHM

Consider a signal f that represents a two�dimen�
sional periodic signal with period 2s in the first and
2s + ϑ in the second coordinates. Samples are defined as
fk, t, where k = 0 : 2s – 1 and t = 0 : 2s + ϑ – 1. A discrete
Fourier transform (DFT) for the signal f is defined by
the formula

(1)

A two�dimensional DFT can be computed by a
combination of one�dimensional DFTs. To this end,
one computes F in the following form:

(2)

The sum in square brackets in (2) represents the
computation of a one�dimensional DFT, for example,
by rows; then the outer sum represents the computa�
tion of a one�dimensional DFT by columns. Let us
transform this formula by dividing the second coordi�
nate into even and odd components:

1 This paper uses the materials of a report that was submitted at
the 11th International Conference Pattern Recognition and
Image Analysis: New Information Technologies that was held in
Samara, Russia on September 23–28, 2013.
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(3)

where  and  are two�dimensional subsig�

nals of the signal fk, t that contain the components of
the signal fk, t with even and odd indexes in the second
coordinate, respectively. It is clear that the dimension

of these signals is 2s × 2s + ϑ – 1. Notice that 
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and  are two�dimensional DFTs for the sub�

signals  and , respectively.

One can show that the multiplier  in formula
(3) possesses the property of symmetry with respect to
2s + ϑ – 1; i.e., for m1 = 0 : 2s + ϑ – 1 and m = m1 + 2s + ϑ – 1,
we have

(4)
For convenience, denote

(5)

Then formulas (3) and (4) with regard to the nota�
tions (5) yield

(6)

where l = 0 : 2s – 1 and m1 = 0 : 2s + ϑ – 1 – 1.

For each of the sums  and , we
can continue the procedure of division of the second
coordinate into even and odd components similar to
(3). We obtain four sums

(7)

where l = 0 : 2s – 1, m1,  = 0 : 2s + ϑ – 1 – 1, m1 are

even components, and  are odd components.

Next, applying procedure (3) to formulas (7), at
step ϑ we obtain 2ϑ sums of the form

(8)
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where l = 0 : 2s – 1 and mϑ – 1 = 0 : 2s + 1 – 1. The sums
(8) differ by the set of input samples mϑ – 1 obtained by
the division of the set mϑ – 2 into even and odd compo�
nents at the previous step.

Hence, after ϑ steps, we arrive at signals of dimen�
sion 2s × 2s of the form

(9)

where l, mϑ = 0 : 2s – 1.
Let us apply a two�dimensional FFT algorithm by the

analog of the Cooley–Tukey algorithm described in [3]
to each of 2s signals (9). Population of the spectra of these
signals is the discrete Fourier transform of the signal f.

Let us calculate the number of operations. Proce�
dure (3) takes 2ϑ – 1ϑ operations of complex multipli�
cations and 2ϑ + 1ϑ complex additions. The two�
dimensional FFT by the analog of the Cooley–Tukey
algorithm applied to finite signal (9) of dimension 2s :
2s takes 3 ⋅ 22s – ss operations of complex multiplica�
tions and 22s + 1 operations of complex additions [3].
Then the total number of operations for processing the
source signal fk, t, where k = 0 : 2s – 1 and t = 0 : 2s + ϑ – 1,
is 3 ⋅ 22s + ϑ – 3(s + ϑ) operations of complex multiplica�
tions and 22s + ϑ + 1(s + ϑ) operations of complex
additions. The computation of the FFT of the
source signal fk, t by division into rows and columns
takes 22s + ϑ – 1(2s + ϑ) operations of complex multi�
plication and 22s + ϑ ⎯ 3(2s + ϑ) operations of complex
addition.

2. THE RESULTS OBTAINED

To test the algorithm, we wrote a program in the
C++ language with the use of the message passing
interface (MPI) library. The testing was carried out on
a personal computer with the following characteristics:

• Processor: Intel Core 2 Duo CPU T8100 2.1 GHz;
• Main memory: 2 Gb;
• Operating system: Windows XP Service Pack 3.
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Example of a source signal with the number of samples 1024 × 4096.



PATTERN RECOGNITION AND IMAGE ANALYSIS  Vol. 25  No. 1  2015

MODIFICATION OF A TWO�DIMENSIONAL FAST FOURIER TRANSFORM 83

The running time of the algorithms is presented in
the table. An example of the source signal is shown in
the figure.

3. CONCLUSIONS

A modified two�dimensional FFT algorithm by the
analog of the Cooley–Tukey algorithm for a rectangu�
lar signal takes a smaller number of complex opera�
tions of addition and multiplication and runs faster
than the analog of the two�dimensional FFT algo�
rithm by rows and columns.
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Table. Running time of a two�dimensional FFT algorithm for a rectangular signal (in seconds)

Height Width Number 
of processes

FFT by rows and columns FFT by the analog of the Cooley–
Tukey algorithm

2 processors 4 processors 2 processors 4 processors

1024 2048 1 1.105 1.081 0.666 0.645
2 1.356 1.345 2.441 2.421
4 0.986 1.123 2.121 1.903
8 0.768 1.233 1.757 2.566

16 11.322 1.101 11.900 71.360
4096 1 2.414 2.392 1.413 1.410

2 2.377 2.355 4.132 4.097
4 1.686 2.556 3.111 7.130
8 1.319 2.467 8.976 32.455

16 – 4.414 – 51.223
8192 1 6.057 5.970 3.312 3.848

2 5.179 4.812 7.110 7.505
4 3.671 4.677 6.500 13.001
8 2.938 3.833 5.990 25.020

16 – 7.600 – –
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